Мотокультиватор solo

Таким образом реактивная энергия коммутации из реактора возвращается в накопительную конденсаторную батарею. В общем случае при регулировании трехфазного трехуровневого инвертора (включая возможность нескольких переключений одного и того же вентиля за полупериод) в зависимости от знака формируемых на выходе напряжений возможны следующие виды коммутации: U0, i0 (где U - напряжение фазы инвертора, i - ток фазы инвертора): от транзисторов вентиля 14 к диодам 24 и обратно при включенных транзисторах 15; U0, i0: от транзисторов вентиля 17 к диодам 25 и обратно при включенных транзисторах 16 (коммутационные процессы протекают аналогично предыдущему пункту в силу симметрии схемы); U0, i0: от обратных диодов вентилей 14 и 15 к транзисторам 16 и диодам 25 и обратно. U0, i0: от обратных диодов вентилей 16 и 17 к транзисторам 15 и диодам 24 и обратно(при коммутации процессы протекают аналогично предыдущему пункту в силу симметрии схемы); Таким образом из представленных восьми типов коммутации (включая обратные коммутации) принципиально можно выделить четыре типа: 1) от наружного (верхнего) управляемого вентиля к шунтирующему диоду того же плеча инвертора; 2) наоборот, от шунтирующего диода к управляемому вентилю; 3) от обратных диодов вентилей одного плеча к внутреннему управляемому вентилю и шунтирующему диоду другого плеча той же фазы; 4) наоборот, от управляемого вентиля и шунтирующего диода к обратным диодам.

Рассмотрим процессы, протекающие при различных типах коммутации при наличии в схеме коммутирующих цепей, 1) Коммутация первого типа, например, при коммутации тока от управляемого вентиля 14 к шунтирующему диоду 24 осуществляется в два мотокультиватор solo. В предкоммутационном состоянии ток проводят коммутирующий реактор 26, управляемые вентили 14, 15, реактор 27. Конденсатор 18 разряжен, а конденсатор 19 заряжен до уровня напряжения в звене постоянного тока Ud - напряжения между шинами постоянного тока 29 и 35 (с точностью до напряжений в блоках рекуперации энергии).

Коммутация начинается запиранием управляемого вентиля 14. Отпираются коммутирующие диоды 36 и 37 и происходит плавный перезаряд конденсаторов 18 и 19, при этом мотокультиватор фортуна цена конденсатор 18 заряжается по цепи 26-36-18-37-27- (другая фаза)-(звено постоянного тока 6-5)-26, а конденсатор 19 перезаряжается по цепи 42-19-40-37-27-(другая фаза)-(звено постоянного тока 5-6)-42.

По окончании первого этапа коммутации конденсаторы 18 и 19 перезаряжаются до одинакового уровня напряжения, равного половине от Ud (с точностью до напряжений 40.

На втором этапе коммутации ток через шунтирующий диод плавно нарастает, а ток через реактор 26 и диод 36 плавно спадает, вызывая дальнейший перезаряд конденсаторов 18 и 19 (на величину, соответствующую напряжениям на 40.

При достижении током через реактор 26 и диоды 36 нулевого значения, диоды 36 запираются, а процесс коммутации заканчивается. 2) Коммутация второго типа, например, при коммутации тока от шунтирующего диода 24 к управляемому вентилю 14 осуществляется в три этапа. В предкоммутационном состоянии мотокультиватор solo проводят шунтирующие диоды 24, управляемый вентиль 15, реактор 27.

Конденсаторы 18 и 19 заряжены до одинакового уровня напряжения (с точностью до напряжений в блоках рекуперации энергии 40. Коммутация начинается отпиранием управляемого вентиля 14. Ток через шунтирующие диоды 24 мотокультиватор sadko t 370 плавно спадает, а через 14 нарастает со скоростью, ограниченной индуктивностью коммутирующих реакторов 26 и 27. Первый этап коммутации заканчивается, когда ток через диоды 24 спадает до нуля. На втором этапе коммутации происходит перезаряд конденсаторных батарей 18 и 19 (18 разряжается до нуля по контуру цепи 18-40-26-14-15-27-31-38-41-18, а 19 заряжается до полного напряжения в звене постоянного тока по контуру 19-42-(звено постоянного тока 6-5)-26-14-15-27-31-38-19). Второй этап заканчивается, когда напряжение на 18 становится равным нулю.

На третьем этапе открываются коммутирующие диоды 36, 37 и «лишний» ток, возникающий в 26, 27, 31 из-за перезаряда 18, 19, спадает до номинального значения через блоки рекуперации 40 и 41 соответственно, после чего коммутирующие диоды запираются и коммутация заканчивается. 3) Рассмотрим процессы при коммутации третьего типа, например от обратных диодов вентилей 14, 15 к управляемому вентилю 16 и мотокультиватор solo диоду 25. Коммутация третьего типа осуществляется в два этапа.

В предкоммутационном состоянии ток проводят реактор 27, обратные диоды вентилей 14, 15, реактор 26.

Конденсаторная батарея 18 разряжена до нуля, а 19 заряжена до полного напряжения Ud (с точностью до напряжений в блоках рекуперации энергии 40. Коммутация начинается отпиранием вентиля 16: ток через него начинает плавно нарастать, а через диоды 14, 15 плавно спадать. Одновременно происходит плавный перезаряд конденсаторных батарей 18, 19: 18 заряжается по цепи 18-37-27-(другая фаза)-(звено постоянного тока 6-5)-26-36-18, а 19 разряжается по цепи 19-41-37-27-(другая фаза)-(звено постоянного тока 5-6)-42-19. По окончании первого этапа коммутации конденсаторы 18 и 19 перезаряжаются до одинакового уровня напряжения, равного половине Ud (с точностью до напряжений в блоках рекуперации энергии 40.

Частотные инверторы однофазные

Основной ток (нагрузки) протекает по цепи 31-16-25, к которому прибавляется ток перезаряда 18, 19. На втором мотокультиватор solo коммутации открывается коммутирующий диод 38 и сверхтоки через реакторы 26, 27, 31, вызванные перезарядом 18, 19, спадают через блоки мотокультиватор solo 40, 41 соответственно.

По окончании второго этапа токи через реакторы 26 и 27 становятся равными нулю, а через 31 - номинальным, коммутирующие диоды 36. 4) Рассмотрим процессы при коммутации четвертого типа, например, от управляемого вентиля 16 и шунтирующего диода к обратным диодам вентилей 14, 15.

Коммутация четвертого типа осуществляется в мотокультиватор solo этапа. В предкоммутационном состоянии ток проводят реактор 31, управляемый вентиль 16 и шунтирующие диоды 25. Конденсаторные батареи 18, 19 заряжены до одинакового уровня напряжения, равного половине от Ud (с точностью до напряжений в блоках мотокультиватор solo энергии 40.

Коммутация начинается запиранием управляемого вентиля 16.

Протекание тока через 16 и 25 прекращается; отпирается коммутирующий диод 38 и начинается плавный перезаряд конденсаторных батарей 18 и 19: 18 разряжается по цепи 18-40-(звено постоянного тока 5-6)-(нагрузка)-31-38-41-18, а 19 заряжается по цепи 19-42-(звено постоянного тока 6-5)-(нагрузка)-31-38-19. Первый этап заканчивается, когда напряжение на 18 становится равным нулю, а 19 - равным половине напряжения Ud. На втором этапе коммутации отпираются обратные диоды 14, 15, через которые начинает протекать ток нагрузки.

Одновременно с диодами 14, 15 открываются коммутирующие диоды 36, 37; через 37 плавно спадает ток реактора 31 (по цепи 31-38-41-37-27-31), вызванный перезарядом 18, 19, а через 36 протекает разностный ток вентилей 14, 15 и плавно нарастает ток реактора 26. По окончании второго этапа ток через 31 становится равным нулю, через 26 - номинальным, коммутирующие диоды 36. Ток нагрузки по окончании коммутации протекает по цепи 27-15-14-26-(звено постоянного тока 5-6)-(нагрузка)мотокультиватор solo. Во всех четырех типах коммутаций скорость изменения напряжения на конденсаторных батареях 18, 19 определяется величиной их емкости и значением тока нагрузки. 17 при их запирании равна скорости изменения напряжения на конденсаторах 18, 19.

Таким образом, в ситуации, когда один из последовательно соединенных полупроводниковых приборов вентиля запирается раньше других (в силу имеющихся разбросов задержек выключения самих приборов и каналов управления), напряжение на ней нарастает плавно и к моменту отпирания остальных приборов не превышает максимально допустимого значения.

Дополнительный эффект заключается в снижении динамических потерь в полупроводниковых приборах. В качестве примера работы заявляемой коммутирующей цепочки на фиг.4 приведены осциллограммы напряжений на трех последовательно соединенных IGCT-тиристорах (4500 В, 4000 А) при задержке выключения двух из них на 1 мкс.

Разброс напряжений на приборах в закрытом состоянии составил при этом около 600 В, что является приемлемым с учетом рекомендуемых производителями полупроводниковых приборов запасов по напряжению. Осциллограммы, изображенные на фиг.5, поясняют работу преобразователя в целом. Базовый трехфазный мостовой инвертор формирует основу U3 выходного напряжения преобразователя с низкой частотой переключения (в примере это частота сети - 50 Гц). Оставшаяся разница напряжений формируется однофазными мостовыми инверторами.

Управление каждым из однофазных мостовых инверторов осуществляется с фазовым сдвигом относительно друг друга, за счет чего увеличивается результирующая частота пульсаций выходного напряжения. В примере частота переключения силовых ключей в каждом из мостов составляет 267 Гц, а результирующая частота модуляции 800 Гц.

На фиг.5 приняты следующие обозначения: REF0 - сигнал задания, US - напряжение фазы трехуровневого трехфазного мостового инвертора, V3 - задание для последовательно соединенных мостовых инверторов фазы, равное разности задания на фазу и напряжения на фазе трехфазного инвертора, U3 - результирующее напряжение преобразователя. STATCOM Based on Multimodules of Multilevel Converters Under Multiple Regulation Feedback Control Yiqiang Chen and Boon-Teck OoiDEEE TRANSACTIONS ON POWER ELECTRONICS, VOL.14, №5, SEPTEMBER 1999.

Патент США US 6621719 B2 (Sep.16, 2003) Converter with additional voltage addition or subtraction at the output STEIMER PETER (CH); VEENSTRA MARTIN (CH). Снижение динамических потерь транзисторов инвертора путем изменения скорости нарастания тока конденсаторов. Авторское свидетельство №989711 (15.01.83), УДК 621.314.57 (088.8). Преобразователь напряжения, выполненный по комбинированной схеме, включающей в себя базовый мостовой многоуровневый (по меньшей мере трехуровневый) трехфазный инвертор напряжения на вентилях, образованных последовательным соединением полностью управляемых полупроводниковых приборов в плечах моста, включенных соответственно между плюсовой или минусовой шиной постоянного тока и соответствующим фазным выводом, а также один или несколько последовательно соединенных по переменному току однофазных мостовых инверторов, включенных в каждую фазу на выходе базового инвертора, отличающийся тем, что в каждое плечо базового инвертора введены цепочка из последовательно соединенных конденсатора, первого коммутирующего диода, подключенного к первой обкладке конденсатора, и второго коммутирующего диода, подключенного к второй обкладке конденсатора, и два коммутирующих реактора, причем указанная цепочка подключена параллельно вентилю плеча так, что первый коммутирующий диод соединен с вентилем со стороны шины постоянного тока, один коммутирующий реактор включен между соответствующей шиной постоянного тока и точкой соединения первого коммутирующего диода и вентиля плеча, а второй коммутирующий реактор - между точкой соединения второго коммутирующего диода с вентилем плеча и соответствующим фазным выводом, при этом коммутирующие диоды соединены с вентилями плеча одноименными электродами; в каждую фазу инвертора введены три рекуперирующих блока, два из которых входами включены каждый между соответствующей шиной постоянного тока и точкой соединения конденсатора и первого коммутирующего диода, при этом вход третьего рекуперирующего блока включен между точками соединения конденсаторов инверторы цены в москве соседних плеч фазы со вторыми коммутирующими диодами, а выходы всех рекуперирующих блоков фазы включены между шинами постоянного тока базового инвертора.

Карта